Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.013
Filtrar
1.
Sci Total Environ ; 927: 172151, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575010

RESUMO

Legacy disposal of oil and gas produced water (OGPW) to surface water has led to radium contamination in streambed sediment creating a long-term radium source. Increased radium activities pose a potential health hazard to benthic organisms, such as freshwater mussels, as radium is capable of bioaccumulation. This project quantifies the impact of OGPW disposal on adult freshwater mussels, Eurynia dilatata, which were examined along the Allegheny River adjacent to a centralized waste treatment facility (CWT) that historically treated and then discharged OGPW. Radium isotopes (226Ra and 228Ra) were measured in streambed sediment, mussel soft tissue, and mussel hard shell collected upstream, at the outfall, 0.5 km downstream, and 5 km downstream of the CWT. Total radium activity was significantly higher (p < 0.05) in mussel tissue (mean = 3.44 ± 0.95 pCi/g), sediment (mean = 1.45 ± 0.19 pCi/g), and hard shell (mean = 0.34 ± 0.11 pCi/g) samples 0.5 km downstream than background samples collected upstream (mean = 1.27 ± 0.24; 0.91 ± 0.09; 0.10 ± 0.02 pCi/g respectively). Mussel shells displayed increased 226Ra activities up to 5 km downstream of the original discharge. Downstream soft tissue and hard shell 87Sr/86Sr ratios, as well as hard shell metal/calcium (e.g., Na/Ca; K/Ca; Mg/Ca) and 228Ra/226Ra ratios demonstrated trends towards values characteristic of Marcellus OGPW. Combined, this study demonstrates multiple lines of evidence for radium retention and bioaccumulation in freshwater mussels resulting from exposure to Marcellus OGPW.


Assuntos
Bivalves , Rádio (Elemento) , Poluentes Radioativos da Água , Animais , Poluentes Radioativos da Água/análise , Bivalves/metabolismo , Rádio (Elemento)/análise , Monitoramento de Radiação , Água Doce , Sedimentos Geológicos/química
2.
Genes (Basel) ; 15(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38540424

RESUMO

Fatty acid desaturases (Fads), as key enzymes in the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFAs), catalyze the desaturation between defined carbons of fatty acyl chains and control the degree of unsaturation of fatty acids. In the present study, two Fads genes, designated MulFadsA and MulFadsB, were identified from the genome of the dwarf surf clam Mulinia lateralis (Mollusca, Mactridae), and their spatiotemporal expression was examined. MulFadsA and MulFadsB contained the corresponding conserved functional domains and clustered closely with their respective orthologs from other mollusks. Both genes were expressed in the developmental stages and all tested adult tissues of M. lateralis, with MulFadsA exhibiting significantly higher expression levels in adult tissues than MulFadsB. Subsequently, the effects of dietary microalgae on Fads expressions in the dwarf surf clam were investigated by feeding clams with two types of unialgal diets varying in fatty acid content, i.e., Chlorella pyrenoidosa (Cp) and Platymonas helgolandica (Ph). The results show that the expressions of MulFads were significantly upregulated among adult tissues in the Cp group compared with those in the Ph group. In addition, we observed the desaturation activity of MulFadsA via heterologous expression in yeasts, revealing Δ5 desaturation activity toward PUFA substrates. Taken together, these results provide a novel perspective on M. lateralis LC-PUFA biosynthesis, expanding our understanding of fatty acid synthesis in marine mollusks.


Assuntos
Bivalves , Chlorella , Animais , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Insaturados/genética , Ácidos Graxos Insaturados/metabolismo , Chlorella/metabolismo , Bivalves/genética , Bivalves/metabolismo , Ácidos Graxos/metabolismo
3.
Aquat Toxicol ; 270: 106883, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503038

RESUMO

The escalating use of silver nanoparticles (AgNPs) across various sectors for their broad-spectrum antimicrobial capabilities, has raised concern over their potential ecotoxicological effects on aquatic life. This study explores the impact of AgNPs (50 µg/L) on the marine clam Ruditapes philippinarum, with a particular focus on its gills and digestive glands. We adopted an integrated approach that combined in vivo exposure, biochemical assays, and transcriptomic analysis to evaluate the toxicity of AgNPs. The results revealed substantial accumulation of AgNPs in the gills and digestive glands of R. philippinarum, resulting in oxidative stress and DNA damage, with the gills showing more severe oxidative damage. Transcriptomic analysis further highlights an adaptive up-regulation of peroxisome-related genes in the gills responding to AgNP-induxed oxidative stress. Additionally, there was a noteworthy enrichment of differentially expressed genes (DEGs) in key biological processes, including ion binding, NF-kappa B signaling and cytochrome P450-mediated metabolism of xenobiotics. These insights elucidate the toxicological mechanisms of AgNPs to R. philippinarum, emphasizing the gill as a potential sensitive organ for monitoring emerging nanopollutants. Overall, this study significantly advances our understanding of the mechanisms driving nanoparticle-induced stress responses in bivalves and lays the groundwork for future investigations into preventing and treating such pollutants in aquaculture.


Assuntos
Bivalves , Nanopartículas Metálicas , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Prata/análise , Poluentes Químicos da Água/toxicidade , Bivalves/metabolismo , Brânquias
4.
J Hazard Mater ; 469: 133896, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38428300

RESUMO

Paralytic shellfish toxins (PSTs) produced by some marine dinoflagellates can cause severe human intoxication via vectors like bivalves. Toxic dinoflagellate Gymnodinium catenatum produce a novel group of hydroxybenzoate PSTs named GC toxins, but their biokinetics in bivalves haven't been well examined. In this experiment, we analyzed PSTs in bay scallops Argopecten irradians exposed to G. catenatum (strain MEL11) to determine their accumulation, elimination, anatomical distribution, and biotransformation. To our surprise, up to 30% of the PSTs were accumulated in the adductor muscle of scallops at the end of the experiment, and the toxicity of adductor muscle exceeded the regulatory limit of 800 µg STXeq/kg in only 6 days. High concentration of toxins in the adductor muscle are likely linked to the rapid transfer of GC toxins from viscera to other tissues. Moreover, most GC toxins in scallops were found rapidly transformed to decarbamoyl toxins through enzyme-mediated hydrolysis, which was further supported by the in vitro incubation experiments. Our study demonstrates that GC toxins actively participate in toxin distribution and transformation in scallops, which may increase the risks of food poisoning associated with the consumption of scallop adductor muscle. ENVIRONMENTAL IMPLICATION: The negative impacts of harmful algal blooms (HABs) have become a global environmental concern under the joint effects of cultural eutrophication and climate change. Our study, targeted on the biokinetics of paralytic shellfish toxins in scallops exposed to Gymnodinium catenatum producing unique GC toxins, aims to elucidate potential risks of seafood poisoning associated with GC toxins. The findings of this study will help us to understand the roles of GC toxins in seafood poisoning, and to develop effective management strategies against toxic algal blooms and phycotoxins.


Assuntos
Bivalves , Dinoflagelados , Pectinidae , Intoxicação por Frutos do Mar , Animais , Humanos , Toxinas Marinhas/toxicidade , Intoxicação por Frutos do Mar/etiologia , Pectinidae/metabolismo , Bivalves/metabolismo , Hidroxibenzoatos/metabolismo , Alimentos Marinhos , Frutos do Mar
5.
Mar Biotechnol (NY) ; 26(2): 389-403, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38483672

RESUMO

Bivalve mass mortalities have been reported worldwide, which not only can be explained as a result of pathogen infection, but may reflect changes in environments. Although these episodes were often reported, there was limited information concerning the molecular responses to various stressors leading to summer mortality. In the present work, RNA sequencing (RNA-seq), tandem mass tagging (TMT)-based quantitative proteomics, and 16S rRNA sequencing were used to explore the natural outbreak of summer mortality in the clam Meretrix petechialis. We identified a total of 172 differentially expressed genes (DEGs) and 222 differentially expressed proteins (DEPs) in the diseased group compared to the normal group. The inconsistent expression profiles of immune DEGs/DEPs may be due to the immune dysregulation of the diseased clams. Notably, 11 solute carrier family genes were found among the top 20 down-regulated genes in the diseased group, indicating that weakened transmembrane transport ability might occur in the diseased clams. Integration analysis of transcriptomic and proteomic results showed that many metabolic processes such as "arginine and proline metabolism" and "tyrosine metabolism" were inhibited in the diseased group, suggesting metabolic inhibition. Moreover, 16S rRNA sequencing revealed that the microbial composition of clam hepatopancreas was disordered in the diseased group. The comparison of DEGs expression between the natural summer mortality event and an artificial challenge experiment involving both Vibrio infection and heat stress revealed 9/15 genes showing similar expression trends between the two conditions, suggesting that the summer mortality might be caused by a combination of high temperature and Vibrio infection. These results would deepen our understanding of summer mortality and provide candidate resistance markers for clam resistance breeding.


Assuntos
Bivalves , Proteômica , RNA Ribossômico 16S , Estações do Ano , Animais , Bivalves/genética , Bivalves/microbiologia , Bivalves/metabolismo , RNA Ribossômico 16S/genética , Transcriptoma , Perfilação da Expressão Gênica , Proteoma/genética , Proteoma/metabolismo , Hepatopâncreas/metabolismo , Multiômica
6.
Aquat Toxicol ; 270: 106896, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490093

RESUMO

Inorganic mercury (IHg) is hazardous to marine organisms especially resulting in neurotoxicity, bivalves are sensitive to pollutants as "ocean sentinel", but data on the neurotoxicity of IHg in bivalves are sparse. So we chosed M. chinensis philippi with typical neural structures in bivalves to investigate the neurotoxicity of IHg, which could be helpful to understand the specificity of neural regulation and the response characteristics of bivalves. After acute exposed to IHg (HgCl2) for 24 h, the metabolites of ganglion tissues in M. chinensis philippi were evaluated using 1H-nuclear magnetic resonance based metabolomics; Ca2+, neurotransmitters (nitric oxide, glutamate, acetylcholine) and related enzymes (calcineurin, nitric oxide synthase and acetylcholinesterase) were measured using biochemical detection. Compared to the control group, the levels of the nitric oxide (81.04 ± 12.84 µmol/g prot) and acetylcholine (30.93 ± 12.57 µg/mg prot) in M. chinensis philippi of IHg-treated were decreased, while glutamate (2.11 ± 0.61 mmol/L) increased significantly; the activity of nitric oxide synthase (679.34 ± 135.33 U/mg prot) was increased, while acetylcholinesterase (1.39 ± 0.44 U/mg prot) decreased significantly, and the activity of calcineurin (0.52 ± 0.02 U/mg prot) had a statistically insignificant increasing tendency. The concentration of Ca2+ (0.92 ± 0.46 mmol/g prot) in the IHg-treated group was significantly higher than that in the control group. OPLS-DA was performed to reveal the difference in metabolites between the control and IHg-challenged groups, the metabolites of glucose, glutamine, inosine, succinate, glutamate, homarine, and alanine were sensitive to IHg, subsequently metabolic pathways that were affected including glucose metabolism, glutamine metabolism, nucleotide metabolism, Krebs cycle, amino acid metabolism and osmotic regulation. In our study, IHg interfered with metabolites in M. chinensis philippi, thus the corresponding metabolic pathways were changed, which influenced the neurotransmitters subsequently. Furthermore, Ca2+overload affected the synthesis or degradation of the neurotransmitters, and then the altered neurotransmitters involved in changes in metabolic pathways again. Overall, we hypothesized that the neurotoxic effects of IHg on bivalve were in close contact with metabolism, neurotransmitters, related enzymes and Ca2+, which could be effective neurotoxic biomarkers for marine environmental quality assessment, and also provide effective data for the study of the regulatory mechanism of the nervous system in response to IHg in bivalves.


Assuntos
Bivalves , Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Mercúrio/toxicidade , Mercúrio/metabolismo , Acetilcolinesterase , Óxido Nítrico , Acetilcolina , Calcineurina , Glutamina , Poluentes Químicos da Água/toxicidade , Bivalves/metabolismo , Glutamatos , Neurotransmissores , Óxido Nítrico Sintase , Compostos de Metilmercúrio/toxicidade
7.
Gene ; 911: 148346, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452877

RESUMO

Noncoding RNAs (ncRNAs) have gained significant attention in recent years due to their crucial roles in various biological processes. However, our understanding of the expression and functions of ncRNAs in Cyclina sinensis, an economically important marine bivalve, remains limited. This study aimed to address this knowledge gap by systematically identifying ncRNAs in the mantles of C. sinensis with purple and white shells. Through our analysis, we identified a differential expression of 1244 mRNAs, 196 lncRNAs, 49 circRNAs, and 23 miRNAs between purple- and white-shell clams. Functional enrichment analysis revealed the involvement of these differentially expressed ncRNAs in biomineralization and pigmentation processes. To gain further insights into the regulatory mechanisms underlying shell color formation, we established competitive endogenous RNA (ceRNA) networks. These networks allowed us to identify targeted differentially expressed miRNAs (DEMis) and genes associated with shell color formation. Based on the ceRNA networks, we obtained an up-down-up lncRNA-miRNA-mRNA network consisting of 13 upregulated lncRNAs and a circRNA-miRNA-mRNA network comprising three upregulated circRNAs (novel_circ_0004787, novel_circ_0001165, novel_circ_0000245). Through these networks, we identified and selected an upregulated novel gene (evm.TU.Hic_asm_7.988) and a downregulated sponge miRNA (hru-miR-1985) as potential contributors to shell color regulation. In summary, the present investigation offers a comprehensive analysis of ncRNA catalogs expressed in the clam mantle of C. sinensis. The findings enhance our comprehension of the molecular mechanisms governing shell coloration and offer new perspectives for selective breeding of C. sinensis in the future.


Assuntos
Bivalves , MicroRNAs , RNA Longo não Codificante , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , 60414 , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Redes Reguladoras de Genes , MicroRNAs/genética , MicroRNAs/metabolismo , Bivalves/genética , Bivalves/metabolismo
8.
Int J Biol Macromol ; 265(Pt 2): 131029, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518946

RESUMO

Toll-like receptor 2 (TLR2) is a member of TLR family that plays important roles in the innate immune system, such as pathogen recognition and inflammation regulation. In this study, the TLR2 homologue was cloned from razor clam Sinonovacula constricta (denoted as ScTLR2) and its immune function was explored. The full-length cDNA of ScTLR2 comprised 2890 nucleotides with a 5'-UTR of 218 bp, an open reading frame of 2169 bp encoding 722 amino acids and a 3'-UTR of 503 bp. The deduced amino acid of ScTLR2 showed similar structure to TLR2 homologue with a conserved signal peptide, four LRR domains, one LRR-TYP domain, one LRR-CT domain, one transmembrane domain and a conserved TIR domain. ScTLR2 mRNA was detected in all examined tissues with the highest expression in the gill. After Vibrio parahaemolyticus challenge, the mRNA expression of ScTLR2 was significantly induced both in gill and haemocytes. The recombinant ScTLR2-LRR protein could bind all tested PAMPs including LPS, PGN and MAN. Bacterial agglutination assay showed that rScTLR2 could agglutinate the six tested bacteria with a calcium dependent manner. More importantly, ScTLR2 silencing by siRNA transfection could significantly depress the mRNA expression of Myd88, NF-κB, Tollip, IRF1, and IRF8. The survival rate of S. constricta was markedly decreased after V. parahaemolyticus challenge under this condition. Our current study demonstrated that ScTLR2 served as a pattern recognition receptor to induce immune response against invasive pathogen.


Assuntos
Bivalves , Receptor 2 Toll-Like , Humanos , Animais , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Imunidade Inata/genética , Receptores de Reconhecimento de Padrão/metabolismo , Bactérias/genética , Proteínas Recombinantes/genética , Bivalves/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Filogenia
9.
Environ Sci Pollut Res Int ; 31(15): 22380-22394, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407712

RESUMO

As one of the most significant contaminants and stressors in aquaculture systems, ammonia adversely jeopardizes the health of aquatic animals. Ammonia exposure affects the development, metabolism, and survival of shellfish. However, the responses of the innate immune and antioxidant systems and apoptosis in shellfish under ammonia stress have rarely been reported. In this study, razor clams (Sinonovacula constricta) were exposed to different concentrations of non-ion ammonia (0.25 mg/L, 2.5 mg/L) for 72 h and then placed in ammonia-free seawater for 72 h for recovery. The immune responses induced by ammonia stress on razor clams were investigated by antioxidant enzyme activities and degree of apoptosis in digestive gland and gill tissues at different time points. The results showed that exposure to a high concentration of ammonia greatly disrupted the antioxidant system of the razor clam by exacerbating the accumulation of reactive oxygen species ( O 2 - , H2O2) and disordering the activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase), and the level of activity remained at a significantly high level after recovering for 72 h (P < 0.05). In addition, there were significant differences (P < 0.05) in the expression of key genes (Caspase 7, Cyt-c, Bcl-2, and Bax) in the mitochondrial apoptotic pathway in the digestive glands and gills of razor clams as a result of ammonia stress and were unable to return to normal levels after 72 h of recovery. TUNEL staining indicated that apoptosis was more pronounced in gills, showing a dose and time-dependent pattern. As to the results, ammonia exposure leads to the activation of innate immunity in razor clams, disrupts the antioxidant system, and activates the mitochondrial pathway of apoptosis. This is important for comprehending the mechanism underlying the aquatic toxicity resulting from ammonia in shellfish.


Assuntos
Antioxidantes , Bivalves , Animais , Antioxidantes/metabolismo , Amônia/toxicidade , Amônia/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Bivalves/metabolismo , Apoptose
10.
Mar Environ Res ; 196: 106398, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377938

RESUMO

NH3-N and NO2-N always co-exist in the aquatic environment, but there is not a clear opinion on their joint toxicities to the molluscs. Presently, clams Ruditapes philippinarum were challenged by environmental concentrations of NH3-N and NO2-N, singly or in combination, and analyzed by metabolomics approaches, enzyme assays and transmission electron microscope (TEM) observation. Results showed that some same KEGG pathways with different enriched-metabolites were detected in the three exposed groups within one day, and completely different profiles of metabolites were found in the rest of the exposure period. The combined exposure induced heavier and more lasting toxicities to the clams compared with their single exposure. ACP activity and the number of secondary lysosomes were significantly increased after the combined exposure. The present study shed light on the joint-toxicity mechanism of NH3-N and NO2-N, and provided fundamental data for the toxicity research on inorganic nitrogen.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Nitritos/toxicidade , Nitritos/metabolismo , Amônia/toxicidade , Amônia/metabolismo , Dióxido de Nitrogênio/metabolismo , Bivalves/metabolismo , Estresse Oxidativo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-38408517

RESUMO

Euryhaline organisms can accumulate organic osmolytes to maintain osmotic balance between their internal and external environments. Proline is a pivotal organic small molecule and plays an important role in osmoregulation that enables marine shellfish to tolerate high-salinity conditions. During high-salinity challenge, NAD kinase (NADK) is involved in de novo synthesis of NADP(H) in living organisms, which serves as a reducing agent for the biosynthetic reactions. However, the role of shellfish NADK in proline biosynthesis remains elusive. In this study, we show the modulation of NADK on proline synthesis in the razor clam (Sinonovacula constricta) in response to osmotic stress. Under acute hypersaline conditions, gill tissues exhibited a significant increase in the expression of ScNADK. To elucidate the role of ScNADK in proline biosynthesis, we performed dsRNA interference in the expression of ScNADK in gill tissues to assess proline content and the expression levels of key enzyme genes involved in proline biosynthesis. The results indicate that the knock-down of ScNADK led to a significant decrease in proline content (P<0.01), as well as the expression levels of two proline synthetase genes P5CS and P5CR involved in the glutamate pathway. Razor clams preferred to use ornithine as substrate for proline synthesis when the glutamate pathway is blocked. Exogenous administration of proline greatly improved cell viability and mitigated cell apoptosis in gills. In conclusion, our results demonstrate the important role of ScNADK in augmenting proline production under high-salinity stress, by which the razor clam is able to accommodate salinity variations in the ecological niche.


Assuntos
Bivalves , Fosfotransferases (Aceptor do Grupo Álcool) , Tolerância ao Sal , Animais , Bivalves/metabolismo , Prolina/metabolismo , Glutamatos/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-38181884

RESUMO

The razor clam Sinonovacula constricta is known for its richness in long-chain polyunsaturated fatty acids (LC-PUFA, C ≥ 20). Previously, we demonstrated that it possesses a complete LC-PUFA biosynthetic pathway. However, the mechanisms by which it senses the LC-PUFA pool to regulate their biosynthesis remain unclear. Here, we presented the LC-PUFA sensor UBXD8 as a critical molecule in this intriguing process. The S. constricta UBXD8 (ScUBXD8) shared all characteristic features of its mammalian counterpart and exhibited high mRNA levels in digestive tissues, suggesting its functional role in this bivalve species. By purification of ScUBXD8 protein in vitro, we discovered its ability to sense unsaturated fatty acids (UFA, C ≥ 14) but not saturated ones, as evidenced by polymerization detection. Furthermore, the intensity of ScUBXD8 polymerization increased progressively with longer acyl chain lengths, greater unsaturation degrees, and higher UFA concentrations. Exceptionally, for those located at the same node in LC-PUFA biosynthetic pathway, ScUBXD8 displayed a stronger sensitivity to n-6 UFA compared to n-3 UFA. These results suggested a critical role for ScUBXD8 in balancing fatty acids composition and ratio of n-6/n-3 UFA in S. constricta. Moreover, the UAS domain was confirmed essential for ScUBXD8 polymerization. Through knockdown of ScUbxd8 gene in vivo, there were significant shifts in expression patterns of genes related to LC-PUFA biosynthesis, concurrently influencing fatty acids compositions. These results suggested that ScUBXD8 likely plays a regulatory role in LC-PUFA biosynthesis, possibly through the INSIG-SREBP pathway. Collectively, this study proposed that S. constricta might maintain LC-PUFA homeostasis through UBXD8 to regulate their biosynthesis.


Assuntos
Bivalves , Animais , Bivalves/genética , Bivalves/metabolismo , Ácidos Graxos Insaturados/metabolismo , Mamíferos/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-38237842

RESUMO

The cumulative impacts of rainfall frequency and intensity towards the ecotoxicity of urban pollution is gaining more and more attention in these times of climate change. The purpose of this study was to examine the ecotoxicological impacts of combined sewers overflows and municipal effluent discharge sites during 3 periods (years) of varying intensity precipitations to freshwater mussels Elliptio complanata. Mussels were placed in benthic cages for 3 months during the summer at 2 overflow discharge and 8 km downstream sites including an upstream site for three consecutive years with low (164 mm), medium (182 mm) and high (248 mm) amounts of rain. The results revealed that the effects were mainly influenced by suspended matter loadings and to the dissolved components to a lesser extent. Impacts at the downstream and overflow sites were noticeable at the reproduction (vitellogenin), genotoxicity, neurotoxicity (dopamine and serotonin changes) levels in addition to xenobiotic biotransformation revealed by glutathione S-transferase activity and metallothioneins for organic and heavy metals respectively. The site downstream the effluent produced most of the effects compared to the overflow sites in the Saint-Lawrence River. However, the impacts of combined sewers overflows could become problematic in low dilution systems such as small river and lakes.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Águas Residuárias , Poluentes Químicos da Água/metabolismo , Bivalves/metabolismo , Serotonina/metabolismo , Lagos
14.
Artigo em Inglês | MEDLINE | ID: mdl-37952637

RESUMO

The blood clam (Tegillarca granosa), a marine bivalve of ecological and economic significance, often encounters intermittent hypoxia in mudflats and aquatic environments. To study the response of blood clam foot to prolonged intermittent hypoxia, the clams were exposed to intermittent hypoxia conditions (0.5 mg/L dissolved oxygen, with a 12-h interval) for 31 days. Initially, transcriptomic analysis was performed, uncovering a total of 698 differentially expressed genes (DEGs), with 236 upregulated and 462 downregulated. These genes show enrichments in signaling pathways related to glucose metabolism, sugar synthesis and responses to oxidative stress. Furthermore, the activity of the enzyme glutathione peroxidase (GPx) and the levels of gpx1 mRNA showed gradual increases, reaching their peak on the 13th day of intermittent hypoxia exposure. This observation suggests an indirect protective role of GPx against oxidative stress. The results of this study make a significantly contribute to our broader comprehensive of the physiological, biochemical responses, and molecular reactions governing the organization of foot muscle tissue in marine bivalves exposed to prolonged intermittent hypoxic conditions.


Assuntos
Arcidae , Bivalves , Animais , Arcidae/genética , Arcidae/metabolismo , Bivalves/genética , Bivalves/metabolismo , Perfilação da Expressão Gênica , Hipóxia/genética , Transcriptoma , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo
15.
Int J Biol Macromol ; 256(Pt 2): 128404, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016607

RESUMO

The regulatory mechanism of ceRNA network plays an important role in molecular function and biological processes, however, the molecular mechanism in the shell color of Ruditapes philippinarum has not yet been reported. In this study, we performed transcriptome sequencing on the mantle of R. philippinarum with different shell colors, and screened for mRNA, miRNA, and lncRNA. A total of 61 mRNAs, 3725 lncRNAs and 90 miRNAs were obtained from all the shell color comparison groups (all mRNAs, lncRNAs and miRNAs P < 0.05), and 7 mRNAs, 8 lncRNAs, and 4 miRNAs of the porphyrin pathway and melanin pathway were screened for competitive endogenous RNA (ceRNA) network construction. The results indicate that the ceRNA network composed of mRNA and lncRNA, centered around efu-miR-101, mle-bantam-3p, egr-miR-9-5p, and sma-miR-75p, may play a crucial regulatory role in shell color formation. This study reveals for the first time the mechanism of ceRNA regulatory networks in the shell color of R. philippinarum and providing important reference data for molecular breeding of shell color in R. philippinarum.


Assuntos
Bivalves , MicroRNAs , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , Redes Reguladoras de Genes , MicroRNAs/genética , MicroRNAs/metabolismo , Bivalves/genética , Bivalves/metabolismo
16.
Sci Total Environ ; 912: 169178, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38072265

RESUMO

Ultraviolet filters (UV-filters) are compounds extensively used in personal care products. These compounds are produced at increasing rates and discharged into marine ecosystems in unknown quantities and with no regulation, making them emerging contaminants. Among those, the UV-filter 4-Methylbenzylidene camphor (4-MBC) is used in a variety of personal care products such as sunscreens, soaps, or lipsticks. This high consumption has resulted in its presence in various environmental matrices at in concentrations ranging from ng to µg L-1. Very little is known, however, about the possible adverse effects in exposed non-target organisms. Our study presents novel data on the bioconcentration, toxicokinetics, and molecular effects of 4-MBC in a marine bivalve species of commercial interest, Ruditapes philippinarum (Manila clam). Organisms were exposed at two different concentrations (1.34 and 10.79 µg L-1) of 4-MBC for 7 days, followed by a 3-day depuration period (clean sea waters). Bioconcentration factors (BCF) were 3562 and 2229 L kg-1 for the low and high exposure concentrations, respectively, making this pollutant bioaccumulative according to REACH criteria. Up to six 4-MBC biotransformation products (BTPs)were identified, 2 of them for the first time. Transcriptomic analysis revealed between 658 and 1310 differently expressed genes (DEGs) after 4-MBC exposure. Functional and enrichment analysis of the DEGs showed the activation of the detoxification pathway to metabolize and excrete the bioconcentrated 4-MBC, which also involved energy depletion and caused an impact on the metabolism of carbohydrates and lipids and in the oxidative phosphorylation pathways. Oxidative stress and immune response were also evidenced through the activation of cathepsins and the complement system. Such elucidation of the mode of action of a ubiquitous pollutant such as 4-MBC at the molecular level is valuable both from an environmental point of view and for the sustainable production of Manila clam, one of the most cultivated mollusk species worldwide.


Assuntos
Bivalves , Poluentes Ambientais , Poluentes Químicos da Água , Animais , Bioacumulação , Ecossistema , Perfilação da Expressão Gênica , Bivalves/metabolismo , Biotransformação , Protetores Solares/toxicidade , Protetores Solares/metabolismo , Poluentes Ambientais/análise , Poluentes Químicos da Água/análise
17.
Sci Total Environ ; 912: 169340, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38110097

RESUMO

Research on the mechanisms of reproductive toxicity caused by persistent organic pollutants (POPs) in marine animals has received significant attention. One group of typical POPs, called polycyclic aromatic hydrocarbons (PAHs), has been found to cause various reproductive toxicities in aquatic organisms, including epigenotoxicity, reproductive endocrine disruption, DNA damage effects and other reproductive toxicity, thereby affecting gonadal development. Interestingly, male aquatic animals are more susceptible to the disturbance and toxicity of environmental pollutants. However, current studies primarily focus on vertebrates, leaving a large gap in our understanding of the reproductive toxicity and mechanisms of PAHs interference in marine invertebrates. In this study, male Ruditapes philippinarum was used as an experimental subject to investigate reproduction-related indexes in clams under the stress of benzo[a]pyrene (B[a]P) at different concentrations (0, 0.8, 4 and 20 µg/L) during the proliferative, growth, maturity, and spawning period. We analyzed the molecular mechanisms of reproductive toxicity caused by PAHs in marine bivalves, specifically epigenotoxicity, reproductive endocrine disruption, and gonadal damage-apoptotic effect. The results suggest that DNA methylation plays a crucial role in mediating B[a]P-induced reproductive toxicity in male R. philippinarum. B[a]P may affect sex hormone levels, impede spermatogenesis and testis development in clams, by inhibiting the steroid hormone synthesis pathway and downregulating genes critical for cell proliferation, testis development, and spermatid expulsion. Moreover, the spermatids of male R. philippinarum were severely impaired under the B[a]P stress, leading to reduced reproductive performance in the clams. These findings contribute to a better understanding of the reproductive toxicity response of male marine invertebrates to POPs stress.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Masculino , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Testículo , Bivalves/metabolismo , Organismos Aquáticos , Hormônios Esteroides Gonadais/metabolismo , Dano ao DNA , Poluentes Químicos da Água/análise
18.
Sci Total Environ ; 913: 169676, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38160819

RESUMO

Pesticide application increased by about 1 million tonnes in the last 3 decades. Pesticides' overuse, coupled with the need for several pesticides to control different pests in the same crop, and its application many times per year, results in dangerous chemical cocktails that enter in aquatic systems, with impacts to the ecosystems and its communities. Climatic changes are currently another great concern, is predicted by the end of the 21st century, the earth's surface temperature will increase by about 4 °C. Bivalve species are reported as essential to the ecosystems' balance. However, they are also indicated as the organisms that will suffer the most serious effects of the temperature increase. So, this work intends to: a) verify the harm of the sub-lethal concentrations of two worldwide used pesticides, oxyfluorfen and copper (Cu), when combined, to Cerastoderma edule at 15 °C and 20 °C; b) assess the changes in the antioxidant defence system, the activity of the neurological enzyme acetylcholinesterase and the nutritive value of C. edule, after exposure to sub-lethal concentrations of oxyfluorfen and Cu, single and in the mixture, at 15 °C and 20 °C; c) observe the interaction between Cu and oxyfluorfen, considering the different biomarkers. Bivalves were exposed to oxyfluorfen and Cu, single and combined, for 96 h, at 15 °C and 20 °C. Results showed lethal effects to the organisms exposed at 20 °C when exposed to the highest binary mixture concentrations. Biochemical effects were observed on the organisms exposed to 15 °C, despite not observing any lethal effects. Briefly, there was a reported increase in oxidative stress and a decrease in protein content, regardless of the increase in the activity of antioxidant enzymes. These results suggest the potentially dangerous effects of the chemicals' mixture combined with the temperature, on this species and its consumers, impacting the trophic chain, and consequently, the community structure and function.


Assuntos
Bivalves , Cardiidae , Éteres Difenil Halogenados , Praguicidas , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Cardiidae/metabolismo , Praguicidas/toxicidade , Praguicidas/metabolismo , Acetilcolinesterase/metabolismo , Ecossistema , Bivalves/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
19.
Biomacromolecules ; 25(1): 379-387, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38108296

RESUMO

Mussels are marine organisms that are capable of constructing an underwater adhesion between their bodies and rigid structures. It is well known that mussels achieve underwater adhesion through the presence of mussel adhesive proteins (MAPs) that contain high levels of 3,4-dihydroxyphenylalanine (DOPA). Although the extraordinary underwater adhesive properties of mussels are attributed to DOPA, its capacity to play a dual role in surface adhesion and internal cohesion is inherently limited. However, mussels employ a combination of chemical moieties, not just DOPA, along with anatomical components, such as plaque and byssus, in underwater adhesion. This also involves junction proteins that connect the plaque and byssus. In this study, a novel hybrid MAP was bioengineered via the fusion of the plaque protein (foot protein type 1) and the histidine-rich domain of the junction protein (foot protein type 4). To achieve direct adhesion underwater, the adhesive should maintain surface adhesion without disintegrating. Notably, the histidine-Zn-coordinated hybrid MAP hydrogel maintained a high surface adhesion ability even after cross-linking because of the preservation of its unoxidized and non-cross-linked DOPA moieties. The formulated adhesive hydrogel system based on the bioengineered hybrid MAP exhibited self-healing properties, owing to the reversible metal coordination bonds. The developed adhesive hydrogel exhibits outstanding levels of bulk adhesion in underwater environments, highlighting its potential as an effective adhesive biomaterial. Therefore, the introduction of histidine-rich domains into MAPs may be applied in various studies to formulate mussel-inspired adhesives with self-healing properties and to fully utilize the adhesive ability of DOPA.


Assuntos
Adesivos , Bivalves , Animais , Adesivos/química , Histidina , Zinco , Hidrogéis , Proteínas/química , Di-Hidroxifenilalanina/química , Bivalves/metabolismo
20.
Environ Sci Technol ; 57(48): 19169-19179, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053340

RESUMO

Bivalves serve as an ideal ecological indicator; hence, their use by the NOAA Mussel Watch Program to monitor environmental health. This study aimed to expand the baseline knowledge of using metabolic end points in environmental monitoring by investigating the dreissenid mussel metabolome in the field. Dreissenids were caged at four locations along the Maumee River for 30 days. The mussel metabolome was measured using nuclear magnetic resonance spectroscopy, and mussel tissue chemical contaminants were analyzed using gas or liquid chromatography coupled with mass spectrometry. All Maumee River sites had a distinct mussel metabolome compared to the reference site and revealed changes in the energy metabolism and amino acids. Data also highlighted the importance of considering seasonality or handling effects on the metabolome at the time of sampling. The furthest upstream site presented a specific mussel tissue chemical signature of pesticides (atrazine and metolachlor), while a downstream site, located at Toledo's wastewater treatment plant, was characterized by polycyclic aromatic hydrocarbons and other organic contaminants. Further research into the dreissenid mussel's natural metabolic cycle and metabolic response to specific anthropogenic stressors is necessary before successful implementation of metabolomics in a biomonitoring program.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Lagos , Bivalves/química , Bivalves/metabolismo , Metabolômica , Monitoramento Ambiental/métodos , Metaboloma , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...